ETH zürich

Image source: California Health Care Foundation

Outline

1. Context:

Quantifying the Economic Impacts of Climate Change

2. The Social Cost of Carbon:

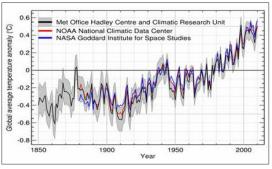
What Is It and Why It Matters

→ Are Healthcare Impacts Counted? → Spoiler: Mostly No

3. Healthcare Cost Impacts of Climate Change

4 Key Findings

4. Conclusion

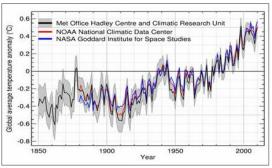

Climate policy needs to better account for healthcare—and healthcare is key to resilience

Bottom-Up Top-Down

Bottom-Up

Top-Down

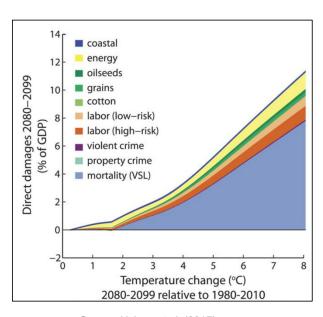
Statistical analyses of relationship between GDP and temperatures



Bottom-Up

Top-Down

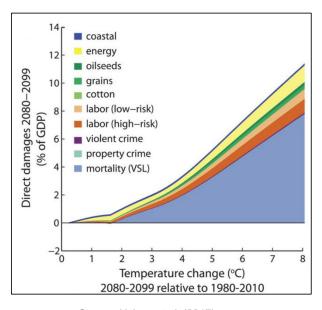
Statistical analyses of relationship between GDP and temperatures



Health(care) Impact	Captured?	Valuation?
Mortality/Morbidity in working populations	Partly Typically only from short-term shocks (e.g., heat waves) but not long-run trends (e.g., disease vectors)	Limited: Only via lost GDP
Mortality/Morbidity in non-working populations	Not really	Limited: Only indirectly via lost GDP
Healthcare Costs	Not really	Limited: Only via healthcare sector productivity

Aggregation of impacts across different channels (mortality, agriculture, etc.) from statistical and/or model-based assessments

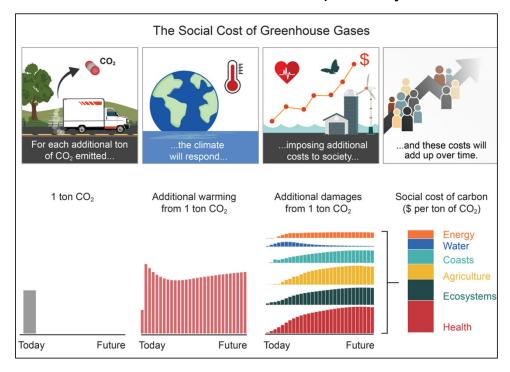
Top-Down



Source: Hsiang et al. (2017)

Aggregation of impacts across different channels (mortality, agriculture, etc.) from statistical and/or model-based assessments

Top-Down



Health(care) Impact	Captured?	Valuation?
Mortality (all populations)	Partly Typically only from limited set of climatic risks, such as temperature extremes or storms	Broad via Value of Statistical Life
Morbidity (all populations)	Limited Excluded in most models but considered for a subset of climatic risks in some	Disease-Adjusted Life Years x Value of Statistical Life
Healthcare Costs	No With very few exceptions	

Source: Hsiang et al. (2017)

2. The Social Cost of Carbon

- Individual studies estimating some of these missing impacts do exist...
- ...but they are generally not incorporated into aggregator models used to estimate the Social Cost of Carbon (SCC)
- SCC: The present value of the total economic costs imposed by +1 ton of CO₂ released today

Source: Hsiang et al. (2023)

2. The Social Cost of Carbon

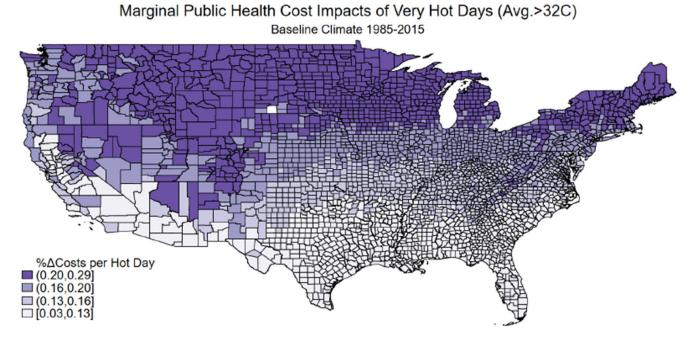
- Importance: Governments around the world use the Social Cost of Carbon
 - In cost-benefit analyses of proposed new rules and policies
 - · To guide policy design, e.g., to benchmark carbon pricing
 - · To set subsidy rates for zero-emissions electricity
 - To calculate environmentally adjusted aggregate economic statistics (savings rates, GDP)

Examples of U.S. Regulations where SCC was used in Cost-Benefit Assessments:

Rule title	Agency	Date
Energy Conservation Program: Energy Conservation Standards for External Power Supplies	DOE	10/02/2014
Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures	DOE	10/02/2014
Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for Microwave Ovens	DOE	17/06/2013
Energy Conservation Program: Energy Conservation Standards for Distribution Transformers	DOE	18/04/2013
National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional	EPA	31/01/2013
Boilers and Process Heaters		
2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy	EPA; DOT; NHTSA	15/10/2012
Standards		
Energy Conservation Program: Energy Conservation Standards for Dishwashers	DOE	01/10/2012
Standards of Performance for Petroleum Refineries; Standards of Performance for Petroleum Refineries for Which	EPA	12/09/2012
Construction, Reconstruction, or Modification Commenced After May 14, 2007		
Oil and Natural Gas Sector: New Source Performance Standards and National Emission Standards for Hazardous Air	EPA	16/08/2012
Pollutants Reviews		
Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers	DOE	31/05/2012
Energy Conservation Program: Energy Conservation Standards for Residential Dishwashers	DOE	30/05/2012
Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for	DOE	16/05/2012
Commercial Heating, Air-Conditioning, and Water-Heating Equipment		
National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating	EPA	16/02/2012
Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small		
Industrial-Commercial-Institutional Steam Generating Units		
Energy Conservation Program: Energy Conservation Standards for Fluorescent Lamp Ballasts	DOE	14/11/2011
Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles	EPA; DOT; NHTSA	15/09/2011
Energy Conservation Program: Energy Conservation Standards for Residential Refrigerators, Refrigerator-Freezers, and	DOE	15/09/2011
Freezers		

Source: Barrage (2019)

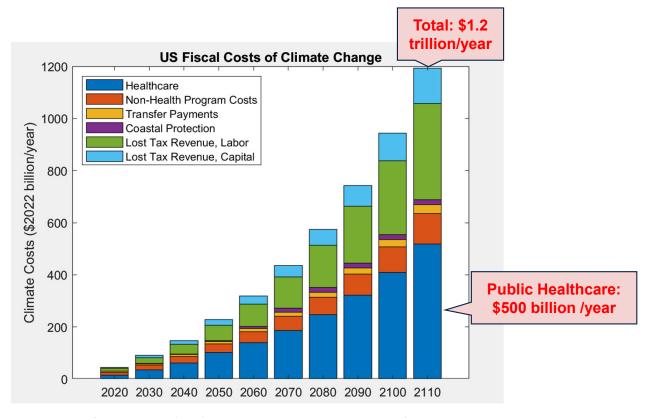
2. The Social Cost of Carbon


- Importance: Governments around the world use the Social Cost of Carbon
 - In cost-benefit analyses of proposed new rules and policies
 - To guide policy design, e.g., to benchmark carbon pricing
 - To set subsidy rates for zero-emissions electricity
 - To calculate environmentally adjusted aggregate economic statistics (savings rates, GDP)

Country	SCC Valuation	Health Impacts Covered?
Switzerland Germany	Variant of GIVE Model (Rennert et al. 2022)	Temperature-related mortality
United States Canada	Multi-Model Based (EPA 2022)	Temperature-related mortality Some other mortality/morbidity

→ Estimates of the economic costs of climate change currently used by governments generally ignore healthcare cost impacts

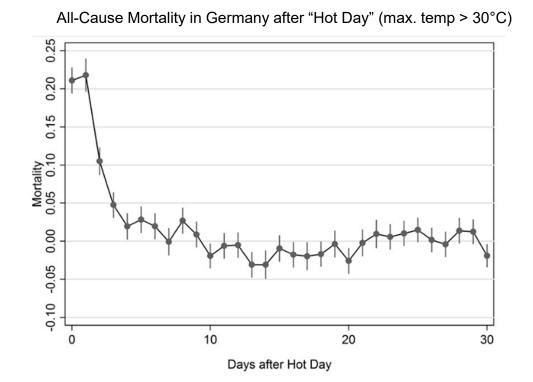
- Growing number of studies evaluate how (public) health expenditures and healthcare utilization are affected by climate-sensitive events such as temperature extremes, storms, and wildfires.
- 4 Key findings:
- 1. Adverse climatic events can lead to large increases in healthcare utilization and expenditures
- 2. Increased *public* health expenditures can strain public finances → **indirect macroeconomic costs**
- 3. Accounting for (1) and (2) can lead to substantial increases in the Social Cost of Carbon
- 4. Focus on short-term effects of extreme events may **misrepresent** climate healthcare cost effects


- In the U.S.:
 - +1 Hurricane increase local public health expenditures 3-5% for 10 years after storm (Deryugina 2017)
 - +1 Wildfire smoke day (≥ 50 µgm⁻³) increases respiratory emergency room visits +30% in following week (Heft-Neal et al. 2023)
 - +1 Hot day (>32°C) increases local total annual public medical spending by up to +0.3% (Barrage 2024)

Source: Barrage (2024)

- Growing number of studies evaluate how (public) health expenditures and healthcare utilization are affected by climate-sensitive events such as temperature extremes, storms, and wildfires.
- 4 Key findings:
- 1. Adverse climatic events can lead to large increases in healthcare utilization and expenditures
- 2. Increased *public* health expenditures can strain public finances → **indirect macroeconomic costs**
- 3. Accounting for (1) and (2) can lead to substantial increases in the Social Cost of Carbon
- 4. Focus on short-term effects of extreme events may **misrepresent** climate healthcare cost effects

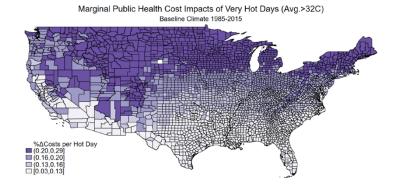
- Public healthcare costs are largest component of overall fiscal burden of climate change (in U.S.)
 - · Ageing populations, rising healthcare costs compound economic burdens of climate change
 - Fiscal burdens require tax increases and/or other public program cuts → indirect macroeconomic cost



Source: Barrage (2024), assuming moderate-high emissions ~RCP 6.0

- Growing number of studies evaluate how (public) health expenditures and healthcare utilization are affected by climate-sensitive events such as temperature extremes, storms, and wildfires.
- 4 Key findings:
- 1. Adverse climatic events can lead to large increases in healthcare utilization and expenditures
- 2. Increased *public* health expenditures can strain public finances → **indirect macroeconomic costs**
- 3. Accounting for (1) and (2) can lead to substantial increases in the Social Cost of Carbon
 - Public healthcare costs (+ other public expenditure effects) increase U.S. SCC +23-33% (Barrage 2024)
- 4. Focus on short-term effects of extreme events may **misrepresent** climate healthcare cost effects

- Growing number of studies evaluate how (public) health expenditures and healthcare utilization are affected by climate-sensitive events such as temperature extremes, storms, and wildfires.
- 4 Key findings:
- 1. Adverse climatic events can lead to large increases in healthcare utilization and expenditures
- 2. Increased *public* health expenditures can strain public finances → **indirect macroeconomic costs**
- 3. Accounting for (1) and (2) can lead to substantial increases in the Social Cost of Carbon
 - Public healthcare costs (+ other public expenditure effects) increase **U.S. SCC +23-33%** (Barrage 2024)
- 4. Focus on short-term effects of extreme events may misrepresent climate healthcare cost effects

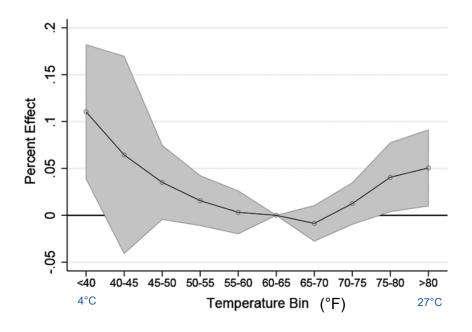

- Focus on short-term effects of extreme events may **misrepresent** climate healthcare costs
- Reason 1: "Harvesting" Effects
 - Extreme heat days may lead to immediate spike but subsequent declines in in hospitalizations, mortality

Source: Karlsson and Ziebarth (2018)

- Focus on short-term effects of extreme events may **misrepresent** climate healthcare costs
- Reason 1: "Harvesting" Effects
 - Extreme heat days may lead to immediate spike but subsequent declines in in hospitalizations, mortality
 - → Healthcare cost of +1 hot day in Germany 90% lower if measured at annual vs. daily level (Karlsson and Ziebarth 2018)

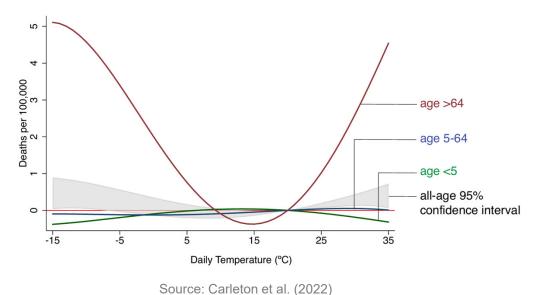
- Focus on short-term effects of extreme events may **misrepresent** climate healthcare costs
- Reason 2: Adaptation
 - Already see significantly lower cost impacts in areas used to dealing with, e.g., heat
 - Caveat: Requires sufficient income, good institutions, information, etc. neither guaranteed nor always possible

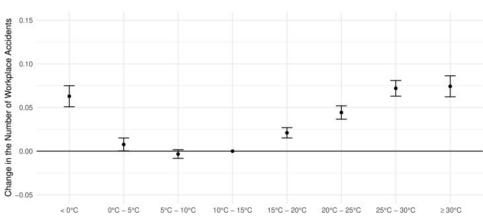
Source: Barrage (2024)


France Summer 2003 Heatwave ~15,000 dead from daily max. temperatures around 39-40°C

Phoenix AZ, home to 1.6 million people, sees daily max. temperatures of 43°C on average for 21 days each year (!)

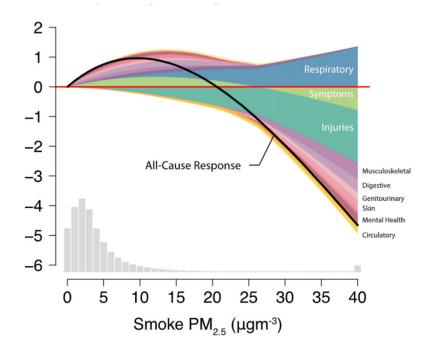
- Focus on short-term effects of extreme events may **misrepresent** climate healthcare costs
- Reason 3: Importance of Gradual Changes
 - Cold temperatures can also increase healthcare costs > Reduction in freezing days may provide hidden benefit


Cumulative Monthly Change in Emergency Department Visits from Daily Temperatures (US)


Source: White (2017)

- Focus on short-term effects of extreme events may **misrepresent** climate healthcare costs
- Reason 3: Importance of Gradual Changes
 - Cold temperatures can also increase healthcare costs \rightarrow Reduction in freezing days may provide hidden benefit

Global Mortality and Daily Temperatures


Swiss Workplace Accidents and Daily Temperatures

Source: Drescher and Janzen (2025)

- Focus on short-term effects of extreme events may misrepresent climate healthcare costs
- But: Bias from focus on short-term effects can go in either direction
 - · May miss effects of damaging gradual changes, such as change in disease vectors
 - May also miss long-term costs of households' delaying medical care due to extreme events

Change in Emergency Department Visits from Wildfire Smoke (U.S.)

Source: Heft-Neal et al. (2023)

4. Conclusion

- Standard models used to value economic impacts of climate change have limited coverage of health and essentially zero coverage of healthcare cost impacts
- Emerging literature projects large potential increases in healthcare demand due to climate change
 - Direct costs & indirect macroeconomic costs (via fiscal pressures) may add substantially to SCC
- Important: Utilization of healthcare services also essential for resilience to climate change
 - · Studies using quasi-experimental variation in healthcare availability have found large effects
 - Rollout of "Seguro Popular" public health program in Mexico lowered cold mortality 1,600 deaths/yr (Cohen and Dechezlepretre 2022)
 - Rollout of "Community Health Centers" in US lowered heat mortality effects -14% (Mullins and White 2020)
- → Governments must plan for fiscal pressures to ensure availability of healthcare in a changing climate
- → Governments must do more on climate both to facilitate and support adaptation and of course mitigation

Thank you for your time.